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Biodiversity is the variety of all life on Earth, from genes to pop-
ulations, species, functions and ecosystems. Alongside its own 
intrinsic value and ecological roles, biodiversity provides us 

with clean water, pollination services, building materials, clothing, 
food and medicine, among many other physical and cultural contri-
butions that species make to ecosystem services and people’s lives1,2. 
The contradiction is that our endeavours to maximize short-term 
benefits have become unsustainable, depleting biodiversity and 
threatening the life-sustaining foundations of humanity in the long 
term3 (Supplementary Box 1). This can help explain why, despite the 
risks, we are living in an age of mass extinction4,5. The imperative to 
feed and house rapidly growing human populations, with an esti-
mated 2.4 billion more people by 2050, together with increasing dis-
ruptions from climate change, will put tremendous pressure on the 
world’s last remaining native ecosystems and the species they con-
tain. Because not a single one of the 20 Aichi Biodiversity Targets 
agreed by 196 nations for the period 2011–2020 has been fully met6, 
there is now an urgent need to design more realistic and effective 
policies for a sustainable future7 that help deliver the conservation 
targets under the post-2020 Global Biodiversity Framework, the 
focus of the 15th Conference of the Parties in 2022.

There have been several theoretical and practical frameworks 
underlying biological conservation8 since the 1960s. The field was 
initially focused on the conservation of nature for itself, without 
human interference, but gradually incorporated the bidirectional 
links to people, recognizing our ubiquitous influence on nature and 
the multifaceted contributions we derive from it, including the sus-
tainable use of species1,8,9. Throughout this progress, a critical step has 
been the identification of priority areas for targeted protection, resto-
ration planning, impact avoidance and loss minimization, triggering 
the development of the fields of spatial conservation prioritization 
and systematic conservation planning10–16. While humans and wild 
species are increasingly sharing the same space17, the preservation  

of largely intact nature remains critical for safeguarding many spe-
cies and ecosystems, such as tropical rainforests.

Several tools and algorithms have been designed to facilitate 
systematic conservation planning18. They often allow the explora-
tion and optimization of trade-offs between variables, something 
not readily available in Geographic Information Systems19, which 
can lead to substantial economic, social and environmental gains20. 
While the initial focus has been on maximizing the protection of 
species while minimizing costs, additional parameters can some-
times be modelled, such as species rarity and threat, total protected 
area and evolutionary diversity18,21,22. The most widely used method 
so far, Marxan23, seeks to identify a set of protected areas that collec-
tively allow particular conservation targets to be met under minimal 
costs, using a simulated annealing optimization algorithm. Despite 
its usefulness and popularity, Marxan and similar methods18 were 
designed to optimize a one-time policy, do not directly incorporate 
changes through time, and assume a single initial gathering of bio-
diversity and cost data (although temporal aspects can be explored 
by manually updating and re-running the models under various tar-
gets24). In addition, the optimized conservation planning does not 
explicitly incorporate climate change, variation in anthropogenic 
pressure (although varying threat probabilities are dealt with in 
recent software extensions of Marxan25,26), or species-specific sen-
sitivities to such changes.

In this study we have tackled the challenge of optimizing bio-
diversity protection in a complex and rapidly evolving world by 
harnessing the power of artificial intelligence (AI). We have devel-
oped an entirely novel tool for systematic conservation planning  
(Fig. 1) that optimizes a conservation policy based on static or 
dynamic biodiversity monitoring towards user-defined targets 
(such as minimizing species loss) and within the constraints of a 
limited financial budget, and used it to explore, through simulations 
and empirical analyses, multiple previously identified trade-offs in 
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real-world conservation and to evaluate the impact of data gather-
ing on specific outcomes27. We have also explored the impact of 
species-specific sensitivity to geographically varying local distur-
bances (for example, as a consequence of new roads, mining, trawl-
ing or other forms of unsustainable economic activity with negative 
impacts on natural ecosystems) and climate change (overall tem-
perature increases as well as short-term variations to reflect extreme 
weather events). We name our framework CAPTAIN, denoting 
Conservation Area Prioritization Through Artificial INtelligence.

Within AI, we implemented a reinforcement learning (RL) 
framework based on a spatially explicit simulation of biodiver-
sity and its evolution through time in response to anthropogenic 
pressure and climate change. The RL algorithm is designed to find 
an optimal balance between data generation (learning from the 

current state of a system, also termed ‘exploration’) and action 
(called ‘exploitation’, the effect of which is quantified by the out-
come, also termed ‘reward’). Our platform enables us to assess 
the influence of model assumptions on the reward, mimicking the 
use of counterfactual analyses22. CAPTAIN can optimize a static 
policy, where all the budget is spent at once, or (more in line with 
its primary objective) a conservation policy that develops over 
time, thus being particularly suitable for designing policies and 
testing their short- and long-term effects. Actions are decided 
based on the state of the system through a neural network, whose 
parameters are optimized within the RL framework to maximize 
the reward. Once a model is trained through RL, it can be used to 
identify conservation priorities in space and time using simulated 
or empirical data.
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Fig. 1 | The CAPTAIN reinforcement learning framework. a, A simulated system, which could be equivalent to a country an island or a large coral reef, 
consists of a number of cells, each with a number of individuals of various species. Once a protection unit is identified and protected, its human-driven 
disturbance (for example, forest logging or sea trawling) will immediately reduce to an arbitrarily low level, except for the well-known edge effect47 
characterized by intermediate levels of disturbance. All simulation settings are provided with initial default values but are fully customizable 
(Supplementary Tables 1 and 2). Simulated systems evolve through time and are used to optimize a conservation policy using RL. After training the model, 
the optimized policy can be used to evaluate the model performance based on simulated or empirical data. Using empirical data, the simulated system is 
replaced with available biodiversity and disturbance data. b,c, Analysis flowchart integrating system evolution (b) with simulations and AI modules  
(c) to maximize selected outcomes (for example, species richness). The system evolves between two points in time, with several time-dependent 
variables considered (seven plotted here): species richness, population density, economic value, phylogenetic diversity, anthropogenic disturbance, 
climate and species rank abundance (see www.captain-project.net for animations depicting these and additional variables). Biodiversity features (species 
presence per protection unit at a minimum, plus their abundance under full monitoring schemes as defined here; see Methods and Supplementary Box 
2 for advances in data gathering approaches) are extracted from the system at regular steps, and are then fed into a neural network that learns from the 
system’s evolution to identify conservation policies that maximize a reward, such as protection of the maximum species diversity within a fixed budget. 
The vectors of parameters x, z and y represent the nodes of the input, hidden layers and output of the neural network, respectively.

NATURE SUSTAINABILITY | www.nature.com/natsustain

https://www.captain-project.net
http://www.nature.com/natsustain


ARTICLESNATURE SUSTAINABILITY

Although AI solutions have been previously proposed and to 
some extent are already used in conservation science28,29, to our 
knowledge RL has only been advocated30 and not yet implemented 
in practical conservation tools. In particular, CAPTAIN aims to 
tackle multidimensional problems of loss minimization consid-
ered by techniques such as stochastic dynamic programming but 
proven thus far intractable for large systems13. It thus fills an impor-
tant space in conservation in a dynamic world31, characterized by 
heterogeneous and often unpredictable habitat loss14, which require 
iterative and regular conservation interventions.

We have used CAPTAIN to address the following questions: (1) 
What role does the data-gathering strategy have in effective con-
servation? (2) What trade-offs arise depending on the optimized 
variable, such as species richness, economic value or total area pro-
tected? (3) What can the simulation framework reveal in terms of 
winners and losers, that is, which traits characterize the species and 
areas protected over time? (4) How does our framework perform 
compared with the state-of-the-art model for conservation plan-
ning, Marxan23? Finally, we demonstrate here the usefulness of our 
framework and direct applicability of models trained through RL on 
an empirical dataset of endemic trees of Madagascar.

Results
Impact of data gathering strategy. Using CAPTAIN we found that 
full recurrent monitoring (where the system is monitored at each 
time step, including species presence and abundance) results in the 
smallest species loss: it succeeds in protecting on average 26% more 
species than a random protection policy (Fig. 2a and Supplementary 
Table 3). A very similar outcome (24.9% improvement) is gener-
ated by the citizen science recurrent monitoring strategy (where 
only presence/absence of species are recorded in each cell), with 
a degree of error characteristic of citizen science efforts (Fig. 2b 
and Methods). These two monitoring strategies outperform a full 
initial monitoring with no error, which only saves from extinction 
an average of 20% more species than a random policy (Fig. 2c and 
Supplementary Table 3).

To thoroughly explore the parameter space of the simulations, 
each system was initialized with different species composition and 
distributions and different anthropogenic pressure and climate 
change patterns (Supplementary Figs. 1–4). Because of this stochas-
ticity, the reliability of the protection policies in relation to species 

loss varies across simulations. The policies based on full recurrent 
monitoring and citizen science recurrent monitoring are the most 
reliable, outperforming the baseline random policy in 97.2% of the 
simulations. Both these policies are more reliable than the full initial 
monitoring, which in addition to protecting fewer species on aver-
age (Fig. 2) also results in a slightly lower reliability of the outcome, 
outperforming the random policy in 91.2% of the simulations.

Optimization trade-offs. The policy objective, which determines 
the optimality criterion in our RL framework, strongly influences 
the outcome of the simulations. A policy minimizing species loss 
based on their commercial value (such as timber price) tends to 
sacrifice more species to prioritize the protection of fewer, highly 
valuable ones. This policy, while efficiently reducing the loss of 
cumulative value, decreases species losses by only 10.9% com-
pared with the random baseline (Supplementary Table 3). Thus, a 
policy targeting exclusively the preservation of species with high 
economic value may have a strongly negative impact on the total 
protected species richness, phylogenetic diversity and even amount 
of protected area compared with a policy minimizing species  
loss (Fig. 3a).

A policy that maximizes protected area results in a 27.6% 
increase in the number of protected cells by selecting those cheapest 
to buy; however, it leads to substantial losses in species numbers, 
value and phylogenetic diversity, which are considerably worse than 
the random baseline, with 13.6% more species losses on average 
(Supplementary Table 3). The decreased performance in terms of 
preventing extinctions is even more pronounced when compared 
with a policy minimizing species loss (Fig. 3b).

As expected, the reliability for optimizations based on economic 
value and total protected area is high for the respective policy objec-
tives, but they result in highly inconsistent outcomes in terms of  
preventing species extinctions, with biodiversity losses not  
significantly different from those of the random baseline policy 
(Supplementary Table 3).

Winners and losers. Focusing on the policy developed under full 
recurrent monitoring and optimized on reducing species loss, we 
explored the properties of species that survived in comparison with 
those that went extinct, despite optimal area protection. Species 
that went extinct are characterized by relatively small initial ranges, 
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Fig. 2 | Impact of monitoring strategies on biodiversity protection. a–c, Outcome of policies designed to minimize species loss based on different 
monitoring strategies: full recurrent monitoring (of species presence and abundance at each time step; a), citizen science recurrent monitoring (limited to 
species presence/absence with some error at each time step; b) and full initial monitoring (species presence and abundance only at the initial time;  
c). The results show the percentage change in species loss, total protected area, accumulated species value and phylogenetic diversity between a random 
protection policy (black polygons) and models optimized by CAPTAIN (blue polygons). All results are averaged across 250 simulations, with more 
details shown in Supplementary Table 3. Each simulation was based on the same budget and resolution of the protection units (5!×!5 cells) but differed 
in their initial natural system (species distributions, abundances, tolerances and phylogenetic relationships) and in the dynamics of climate change and 
disturbance patterns.
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small populations and intermediate or low resilience to disturbance 
(Fig. 4a). In contrast, species that survived have either low resilience 
but widespread ranges and high population sizes, or high resilience 
with small ranges and population sizes.

We further assessed what characterizes the grid cells that are 
selected for protection by the optimized policy. The cumulative 
number of species included in these cells is significantly higher than 
the cumulative species richness across a random set of cells of equal 
area (Fig. 4b). Thus, the model learns to protect a diversity of spe-
cies assemblages to minimize species loss. Interestingly, the cells 
selected for protection did not include only areas with the highest 
species richness (Fig. 4c).

Benchmarking through simulations. We evaluated our simu-
lation framework by comparing its performance in optimizing 
policies with that of the current state-of-the-art tool for conser-
vation prioritization, Marxan23. The methods differ conceptually 
in that while CAPTAIN is explicitly designed to minimize loss 
(for example, local species extinction) within the constraints of 
a limited budget, Marxan’s default algorithms minimize the cost 
of reaching a conservation target (for example, protecting at 
least 10% of all species ranges). Additionally, Marxan is typically  
used to optimize the placement of protected units in a single 
step, while CAPTAIN places the protection units across different  
time steps.
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across 250 simulations (blue polygons). The radial axis shows the percentage change compared with the baseline random policy, and the dashed grey 
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To compare the two models, we set up all Marxan analyses with 
an explicit budget constraint, following other tailored implementa-
tions15,32 (see Methods). In a first comparison, we tested a protection 
policy in which all protection units (within a predefined budget) are 
established in one step. To this end, we trained an additional model 
in CAPTAIN based on a full initial monitoring and on a policy in 
which all budget for protection is spent in one step. The analysis 
of 250 simulations showed that CAPTAIN outperforms Marxan 
in 64% of the cases with an average improvement in terms of pre-
vented species loss of 9.2% (Fig. 5).

In a second comparison, we used CAPTAIN with full recurrent 
monitoring and allowed the establishment of a single protection 
unit per time step for both programs (see Methods). Under this 
condition, our model outperforms Marxan in 77.2% of the simula-
tions with an average reduction of species loss of 18.5% (Fig. 5).

Empirical applications. To demonstrate the applicability of our 
framework and its scalability to large, real-world tasks, we analysed 
a Madagascar biodiversity dataset recently used in a systematic 
conservation planning experiment33 under Marxan23. The dataset 
included 22,394 protection units (5 × 5 km) and presence/absence 
data for 1,517 endemic tree species. The cost of area protection 
was set proportional to anthropogenic disturbance across cells, 
as in the original publication33 (see Methods for more details and 
Supplementary Fig. 5).

We analysed the data assuming full initial monitoring in a static 
setting in which all protection units were placed in one step. We lim-
ited the budget to an amount that allows the protection of at most 
10% of the units (or fewer if expensive units are chosen) and set 
the target of preserving at least 10% of the species’ potential range 
within protected units. We repeated the Marxan analyses with a 
boundary length multiplier (BLM; which penalizes the placement of 
many isolated protection units in favour of larger contiguous areas; 
BLM = 0.1, as in ref. 33) and without it (BLM = 0 for comparability 
with CAPTAIN, which does not include this feature).

The solutions found in CAPTAIN consistently outperform those 
obtained with Marxan. Within the budget constraints, CAPTAIN 

solutions meet the target of protecting 10% of the range for all spe-
cies in 68% of the replicates, whereas only up to 2% of the Marxan 
results reach that target (Supplementary Table 4). Additionally, 
with CAPTAIN, a median of 22% of each species range is found 
within protected units, well above the set target of 10% and the 
14% median protected range achieved with Marxan (Fig. 6c,d and 
Supplementary Fig. 6c,d). Importantly, CAPTAIN is able to identify 
priority areas for conservation at higher and therefore more inter-
pretable spatial resolution (Fig. 6b and Supplementary Fig. 6b).

Discussion
We have presented here a new framework to optimize dynamic con-
servation policies using RL and evaluate their biodiversity outcome 
through simulations.

Data gathering and monitoring. Our finding that even simple 
data (presence/absence of species) are sufficient to inform effective 
policies (Fig. 2 and Supplementary Table 3) is noteworthy because 
the information required is already available for many regions and 
taxonomic groups, and could be further complemented by modern 
technologies such as remote sensing and environmental DNA, and 
for accessible locations also citizen science34 in cost-efficient ways 
(Supplementary Box 2).

The reason why single biodiversity assessments and area protec-
tion are often suboptimal is that they ignore the temporal dynamics 
caused by disturbances, population and range changes of species, all 
of which are likely to change through time in real-world situations. 
Although some systems may remain largely static over decades (for 
example, tree species in old-growth forests), others may change 
drastically (for example, alpine meadows or shallow-sea communi-
ties, where species shift their ranges rapidly in response to climatic 
and anthropogenic pressures); all such parameters can be tuned 
in our simulated system and accounted for in training the models 
through RL. Because current methodologies for systematic conser-
vation planning are static, relying on a similar initial data gathering 
as modelled here, their recommendations for area protection may 
be less reliable.
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Optimization trade-offs. Our results indicate clear trade-offs, 
meaning that optimizing one value can be at the cost of another (Fig. 
3 and Supplementary Table 3). In particular, our finding that maxi-
mizing total protected area can lead to substantial species loss is of 
urgent relevance, given that total protected area has been at the core 
of previous international targets for biodiversity (such as the Aichi 
Biodiversity Targets, https://www.cbd.int/sp/targets) and remains a 
key focus under the new post-2020 Global Biodiversity Framework 
under the Convention on Biological Diversity. Focusing on quantity 
(area protected) rather than quality (actual biodiversity protected) 
could inadvertently support political pressure for ‘residual’ reserva-
tion35,36, that is, the selection of new protected areas on land and at 
sea that are unsuitable for extractive activities, which may reduce 
costs and risk of conflicts, but are likely suboptimal for biodiver-
sity conservation. Our trade-off analyses imply that economic value  
and total protected area should not be used as surrogates for  
biodiversity protection.

Learning from the models. Examination of our results reveals that, 
perhaps contrary to intuition, protected areas should not be primar-
ily chosen based on high species richness (a ‘naive’ conservation 
target; Fig. 4). Instead, the simulations indicate that protected cells 
should span a range of areas with intermediate to high species rich-
ness, reflecting known differences between ecosystems or across 
environmental gradients. Such selection is more likely to increase 
protection complementarity for multiple species, a key factor incor-
porated in our software and some others10,23,37.

Applications and prospects. Our successful benchmarking 
against random, naive and Marxan-optimized solutions indi-
cates that CAPTAIN has potential as a useful tool for informing 

on-the-ground decisions by landowners and policymakers. Models 
trained through simulations in CAPTAIN can be readily applied to 
available empirical datasets.

In our experiments, CAPTAIN solutions outperform Marxan, 
even when based on the same input data, as in the example of 
Malagasy trees. Our simulations show that further improvement is 
expected when additional data describing the state of the system are 
used, and when the protection policy is developed over time rather 
than in a single step. These findings indicate that our AI parametric 
approach can (1) more efficiently use the available information on 
species distribution and (2) more easily integrate multidimensional 
and time-varying biodiversity data. As the number of standard-
ized high-resolution biological datasets is increasing (for example, 
see ref. 38), as a result of new and cost-effective monitoring tech-
nologies (Supplementary Box 2), our approach offers a future-proof 
tool for research, conservation and the sustainable use of natural 
resources. Our model can be easily expanded and adapted to almost 
any empirical dataset and to incorporate additional variables, such 
as functional diversity and more sophisticated measures of eco-
nomic value. Similarly, the flexibility of our AI approach allows for 
the design of custom policy objectives, such as optimizing carbon 
sequestration and storage.

In contrast to many short-lived decisions by governments, the 
selection of which areas in a country’s territory should be protected 
will have long-term repercussions. Protecting the right areas, or 
developing sustainable models of using biodiversity without putting 
species at risk, will help safeguard natural assets and their contri-
butions for the future. Choosing suboptimal areas for protection, 
by contrast, could not only waste public funding, but also lead to 
the loss of species, phylogenetic diversity, socioeconomic value 
and ecological functions. AI techniques should not replace human 
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as the target of the policy. Orange bars show species whose protection did not meet the target.
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judgement, and ultimately investment decisions will be based on 
more than just the parameters implemented in our models, includ-
ing careful consideration of people’s manifold interactions with 
nature1,8. It is also crucial to recognize the importance of ensuring 
the right conditions required for effective conservation of protected 
areas in the long term39,40. However, it is now time to acknowledge 
that the sheer complexity of sociobiological systems, multiplied by 
the increasing disturbances in a changing world, cannot be fully 
grasped by the human mind. As we progress in what many are call-
ing the most decisive decade for nature9,41, we must take advantage 
of powerful tools that help us steward the planet’s remaining eco-
systems in sustainable ways—for the benefit of people and all life 
on Earth.

Methods
A biodiversity simulation framework. We have developed a simulation 
framework modelling biodiversity loss to optimize and validate conservation 
policies (in this context, decisions about data gathering and area protection 
across a landscape) using an RL algorithm. We implemented a spatially explicit 
individual-based simulation to assess future biodiversity changes based on 
natural processes of mortality, replacement and dispersal. Our framework also 
incorporates anthropogenic processes such as habitat modi!cations, selective 
removal of a species, rapid climate change and existing conservation e"orts. 
#e simulation can include thousands of species and millions of individuals and 
track population sizes and species distributions and how they are a"ected by 
anthropogenic activity and climate change (for a detailed description of the model 
and its parameters see Supplementary Methods and Supplementary Table 1).

In our model, anthropogenic disturbance has the effect of altering the natural 
mortality rates on a species-specific level, which depends on the sensitivity of the 
species. It also affects the total number of individuals (the carrying capacity) of 
any species that can inhabit a spatial unit. Because sensitivity to disturbance differs 
among species, the relative abundance of species in each cell changes after adding 
disturbance and upon reaching the new equilibrium. The effect of climate change is 
modelled as locally affecting the mortality of individuals based on species-specific 
climatic tolerances. As a result, more tolerant or warmer-adapted species will tend 
to replace sensitive species in a warming environment, thus inducing range shifts, 
contraction or expansion across species depending on their climatic tolerance and 
dispersal ability.

We use time-forward simulations of biodiversity in time and space, with 
increasing anthropogenic disturbance through time, to optimize conservation 
policies and assess their performance. Along with a representation of the natural 
and anthropogenic evolution of the system, our framework includes an agent 
(that is, the policy maker) taking two types of actions: (1) monitoring, which 
provides information about the current state of biodiversity of the system, and 
(2) protecting, which uses that information to select areas for protection from 
anthropogenic disturbance. The monitoring policy defines the level of detail and 
temporal resolution of biodiversity surveys. At a minimal level, these include 
species lists for each cell, whereas more detailed surveys provide counts of 
population size for each species. The protection policy is informed by the results of 
monitoring and selects protected areas in which further anthropogenic disturbance 
is maintained at an arbitrarily low value (Fig. 1). Because the total number of areas 
that can be protected is limited by a finite budget, we use an RL algorithm42 to 
optimize how to perform the protecting actions based on the information provided 
by monitoring, such that it minimizes species loss or other criteria depending  
on the policy.

We provide a full description of the simulation system in the Supplementary 
Methods. In the sections below we present the optimization algorithm, describe the 
experiments carried out to validate our framework and demonstrate its use with an 
empirical dataset.

Conservation planning within a reinforcement learning framework. In our model 
we use RL to optimize a conservation policy under a predefined policy objective (for 
example, to minimize the loss of biodiversity or maximize the extent of protected 
area). The CAPTAIN framework includes a space of actions, namely monitoring 
and protecting, that are optimized to maximize a reward R. The reward defines the 
optimality criterion of the simulation and can be quantified as the cumulative value of 
species that do not go extinct throughout the timeframe evaluated in the simulation. If 
the value is set equal across all species, the RL algorithm will minimize overall species 
extinctions. However, different definitions of value can be used to minimize loss based 
on evolutionary distinctiveness of species (for example, minimizing phylogenetic 
diversity loss), or their ecosystem or economic value. Alternatively, the reward can be 
set equal to the amount of protected area, in which case the RL algorithm maximizes 
the number of cells protected from disturbance, regardless of which species occur 
there. The amount of area that can be protected through the protecting action is 
determined by a budget Bt and by the cost of protection Cc

t

, which can vary across cells 
c and through time t.

The granularity of monitoring and protecting actions is based on spatial units 
that may include one or more cells and which we define as the protection units. In 
our system, protection units are adjacent, non-overlapping areas of equal size (Fig. 
1) that can be protected at a cost that cumulates the costs of all cells included in the 
unit.

The monitoring action collects information within each protection unit about 
the state of the system St, which includes species abundances and geographic 
distribution:
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} (1)

where Ht is the matrix with the number of individuals across species and cells, Dt 
and Ft are matrices describing anthropogenic disturbance on the system, Tt is a 
matrix quantifying climate, Ct is the cost matrix, Pt is the current protection matrix 
and Bt is the available budget (for more details see Supplementary Methods and 
Supplementary Table 1). We define as feature extraction the result of a function 
X(St), which returns for each protection unit a set of features summarizing the state 
of the system in the unit. The number and selection of features (Supplementary 
Methods and Supplementary Table 2) depends on the monitoring policy πX, 
which is decided a priori in the simulation. A predefined monitoring policy also 
determines the temporal frequency of this action throughout the simulation, for 
example, only at the first time step or repeated at each time step. The features 
extracted for each unit represent the input upon which a protecting action can take 
place, if the budget allows for it, following a protection policy πY. These features 
(listed in Supplementary Table 2) include the number of species that are not already 
protected in other units, the number of rare species and the cost of the unit relative 
to the remaining budget. Different subsets of these features are used depending on 
the monitoring policy and on the optimality criterion of the protection policy πY.

We do not assume species-specific sensitivities to disturbance (parameters ds, 
fs in Supplementary Table 1 and Supplementary Methods) to be known features, 
because a precise estimation of these parameters in an empirical case would 
require targeted experiments, which we consider unfeasible across a large number 
of species. Instead, species-specific sensitivities can be learned from the system 
through the observation of changes in the relative abundances of species (x3 in 
Supplementary Table 2). The features tested across different policies are specified 
in the subsection Experiments below and in the Supplementary Methods.

The protecting action selects a protection unit and resets the disturbance 
in the included cells to an arbitrarily low level. A protected unit is also immune 
from future anthropogenic disturbance increases, but protection does not prevent 
climate change in the unit. The model can include a buffer area along the perimeter 
of a protected unit, in which the level of protection is lower than in the centre, 
to mimic the generally negative edge effects in protected areas (for example, 
higher vulnerability to extreme weather). Although protecting a disturbed 
area theoretically allows it to return to its initial biodiversity levels, population 
growth and species composition of the protected area will still be controlled by 
the death–replacement–dispersal processes described above, as well as by the 
state of neighbouring areas. Thus, protecting an area that has already undergone 
biodiversity loss may not result in the restoration of its original biodiversity levels.

The protecting action has a cost determined by the cumulative cost of all cells 
in the selected protection unit. The cost of protection can be set equal across all 
cells and constant through time. Alternatively, it can be defined as a function of the 
current level of anthropogenic disturbance in the cell. The cost of each protecting 
action is taken from a predetermined finite budget and a unit can be protected only 
if the remaining budget allows it.

Policy definition and optimization algorithm. We frame the optimization 
problem as a stochastic control problem where the state of the system St evolves 
through time as described in the section above (see also Supplementary Methods), 
but it is also influenced by a set of discrete actions determined by the protection 
policy πY. The protection policy is a probabilistic policy: for a given set of policy 
parameters and an input state, the policy outputs an array of probabilities 
associated with all possible protecting actions. While optimizing the model, we 
extract actions according to the probabilities produced by the policy to make 
sure that we explore the space of actions. When we run experiments with a fixed 
policy instead, we choose the action with highest probability. The input state is 
transformed by the feature extraction function X(St) defined by the monitoring 
policy, and the features are mapped to a probability through a neural network with 
the architecture described below.

In our simulations, we fix monitoring policy πX, thus predefining the frequency 
of monitoring (for example, at each time step or only at the first time step) and the 
amount of information produced by X(St), and we optimize πY, which determines 
how to best use the available budget to maximize the reward. Each action A 
has a cost, defined by the function Cost(A, St), which here we set to zero for the 
monitoring action (X) across all monitoring policies. The cost of the protecting 
action (Y) is instead set to the cumulative cost of all cells in the selected protection 
unit. In the simulations presented here, unless otherwise specified, the protection 
policy can only add one protected unit at each time step, if the budget allows, that 
is if Cost(Y, St) < Bt.

The protection policy is parametrized as a feed-forward neural network with a 
hidden layer using a rectified linear unit (ReLU) activation function (Eq. (3)) and 

NATURE SUSTAINABILITY | www.nature.com/natsustain

http://www.nature.com/natsustain


ARTICLES NATURE SUSTAINABILITY

an output layer using a softmax function (Eq. (5)). The input of the neural network 
is a matrix x of J features extracted through the most recent monitoring across U 
protection units. The output, of size U, is a vector of probabilities, which provides 
the basis to select a unit for protection. Given a number of nodes L, the hidden 
layer h(1) is a matrix U × L:

h

(1)
ul

= g




J∑

j=1

x

uj

W

(1)
jl




(2)

where u ∈{1, …, U} identifies the protection unit, l ∈{1, …, L} indicates the hidden 
nodes and j ∈{1, …, J} the features and where 

g(x) = max(0, x) (3)

is the ReLU activation function. We indicate with W(1) the matrix of J × L 
coefficients (shared among all protection units) that we are optimizing. Additional 
hidden layers can be added to the model between the input and the output layer. 
The output layer takes h(1) as input and gives an output vector of U variables:
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where σ is a softmax function:

σ(x
i
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)

(5)

We interpret the output vector of U variables as the probability of protecting the 
unit u.

This architecture implements parameter sharing across all protection 
units when connecting the input nodes to the hidden layer; this reduces the 
dimensionality of the problem at the cost of losing some spatial information, which 
we encode in the feature extraction function. The natural next step would be to 
use a convolutional layer to discover relevant shape and space features instead 
of using a feature extraction function. To define a baseline for comparisons in 
the experiments described below, we also define a random protection policy π̂, 
which sets a uniform probability to protect units that have not yet been protected. 
This policy does not include any trainable parameter and relies on feature x6 (an 
indicator variable for protected units; Supplementary Table 2) to randomly select 
the proposed unit for protection.

The optimization algorithm implemented in CAPTAIN optimizes the 
parameters of a neural network such that they maximize the expected reward 
resulting from the protecting actions. With this aim, we implemented a 
combination of standard algorithms using a genetic strategies algorithm43 and 
incorporating aspects of classical policy gradient methods such as an advantage 
function44. Specifically, our algorithm is an implementation of the Parallelized 
Evolution Strategies43, in which two phases are repeated across several iterations 
(hereafter, epochs) until convergence. In the first phase, the policy parameters 
are randomly perturbed and then evaluated by running one full episode of the 
environment, that is, a full simulation with the system evolving for a predefined 
number of steps. In the second phase, the results from different runs are combined 
and the parameters updated following a stochastic gradient estimate43. We 
performed several runs in parallel on different workers (for example, processing 
units) and aggregated the results before updating the parameters. To improve 
the convergence we followed the standard approach used in policy optimization 
algorithms44, where the parameter update is linked to an advantage function A 
as opposed to the return alone (Eq. (6)). Our advantage function measures the 
improvement of the running reward (weighted average of rewards across different 
epochs) with respect to the last reward. Thus, our algorithm optimizes a policy 
without the need to compute gradients and allowing for easy parallelization. Each 
epoch in our algorithm works as:

 for every worker p do
  ϵ

p

← N (0, σ), with diagonal covariance and dimension W + M
  for t = 1,...,T do
   Rt ← Rt−1 + rt(θ + ϵp)
  end for
 end for
 R ← average of RT across workers
 Re ← αR + (1 − α)Re−1
 for every coefficient θ in W + M do
  θ ← θ + λA(Re, RT, ϵ)
 end for

where N  is a normal distribution and W + M is the number of parameters in the 
model (following the notation in Supplementary Table 1). We indicate with rt the 
reward at time t, with R the cumulative reward over T time steps. Re is the running 
average reward calculated as an exponential moving average where α = 0.25 
represents the degree of weighting decrease and Re−1 is the running average  

reward at the previous epoch. λ = 0.1 is a learning rate and A is an advantage 
function defined as the average of final reward increments with respect to the 
running average reward Re on every worker p weighted by the corresponding  
noise ϵp:
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Experiments. We used our CAPTAIN framework to explore the properties of 
our model and the effect of different policies through simulations. Specifically, we 
ran three sets of experiments. The first set aimed at assessing the effectiveness of 
different policies optimized to minimize species loss based on different monitoring 
strategies. We ran a second set of simulations to determine how policies optimized 
to minimize value loss or maximize the amount of protected area may impact 
species loss. Finally, we compared the performance of the CAPTAIN models 
against the state-of-the-art method for conservation planning (Marxan25). A 
detailed description of the settings we used in our experiments is provided in 
the Supplementary Methods. Additionally, all scripts used to run CAPTAIN and 
Marxan analyses are provided as Supplementary Information.

Analysis of Madagascar endemic tree diversity. We analysed a recently 
published33 dataset of 1,517 tree species endemic to Madagascar, for which 
presence/absence data had been approximated through species distribution models 
across 22,394 units of 5 × 5 km spanning the entire country (Supplementary 
Fig. 5a). Their analyses included a spatial quantification of threats affecting the 
local conservation of species and assumed the cost of each protection unit as 
proportional to its level of threat (Supplementary Fig. 5b), similarly to how our 
CAPTAIN framework models protection costs as proportional to anthropogenic 
disturbance.

We re-analysed these data within a limited budget, allowing for a maximum 
of 10% of the units with the lowest cost to be protected (that is, 2,239 units). This 
figure can actually be lower if the optimized solution includes units with higher 
cost. We did not include temporal dynamics in our analysis, instead choosing 
to simply monitor the system once to generate the features used by CAPTAIN 
and Marxan to place the protected units. Because the dataset did not include 
abundance data, the features only included species presence/absence information 
in each unit and the cost of the unit.

Because the presence of a species in the input data represents a theoretical 
expectation based on species distribution modelling, it does not consider the fact 
that strong anthropogenic pressure on a unit (for example, clearing a forest) might 
result in the local disappearance of some of the species. We therefore considered 
the potential effect of disturbance in the monitoring step. Specifically, in the 
absence of more detailed data about the actual presence or absence of species, we 
initialized the sensitivity of each species to anthropogenic disturbance as a random 
draw from a uniform distribution d

s

∼ U(0, 1) and we modelled the presence 
of a species s in a unit c as a random draw from a binomial distribution with a 
parameter set equal to pc

s

= 1− d

s

× D

c, where Dc ∈ [0, 1] is the disturbance (or 
‘threat’ sensu Carrasco et al.33) in the unit. Under this approach, most of the species 
expected to live in a unit are considered to be present if the unit is undisturbed. 
Conversely, many (especially sensitive) species are assumed to be absent from 
units with high anthropogenic disturbance. This resampled diversity was used 
for feature extraction in the monitoring steps (Fig. 1c). While this approach is an 
approximation of how species might respond to anthropogenic pressure, the use of 
additional empirical data on species-specific sensitivity to disturbance can provide 
a more realistic input in the CAPTAIN analysis.

We repeated this random resampling 50 times and analysed the resulting 
biodiversity data in CAPTAIN using the one-time protection model, trained 
through simulations in the experiments described in the previous section and in 
the Supplementary Methods. We note that it is possible, and perhaps desirable, 
in principle to train a new model specifically for this empirical dataset or at least 
fine-tune a model pretrained through simulations (a technique known as transfer 
learning), for instance, using historical time series and future projections of land 
use and climate change. Yet, our experiment shows that even a model trained solely 
using simulated datasets can be successfully applied to empirical data. Following 
Carrasco et al.33, we set as the target of our policy the protection of at least 10% 
of each species range. To achieve this in CAPTAIN, we modified the monitoring 
action such that a species is counted as protected only when at least 10% of its 
range falls within already protected units. We ran the CAPTAIN analysis for a 
single step, in which all protection units are established.

We analysed the same resampled datasets using Marxan with the initial 
budget used in the CAPTAIN analyses and under two configurations. First, 
we used a BLM (BLM = 0.1) to penalize the establishment of non-adjacent 
protected units following the settings used in Carrasco et al.33. After some 
testing, as suggested in Marxan’s manual45, we set penalties on exceeding the 
budget, such that the cost of the optimized results indeed does not exceed the 
total budget (THRESHPEN1 = 500, THRESHPEN2 = 10). For each resampled 
dataset we ran 100 optimizations (with Marxan settings NUMITNS = 1,000,000, 
STARTTEMP = –1 and NUMTEMP = 10,000 (ref. 45) and used the best of them as 
the final result. Second, because the BLM adds a constraint that does not have a 
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direct equivalent in the CAPTAIN model, we also repeated the analyses without it 
(BLM = 0) for comparison.

To assess the performance of CAPTAIN and compare it with that of Marxan, 
we computed the fraction of replicates in which the target was met for all species, 
the average number of species for which the target was missed and the number of 
protected units (Supplementary Table 4). We also calculated the fraction of each 
species range included in protected units to compare it with the target of 10% (Fig. 
6c,d and Supplementary Fig. 6c,d). Finally, we calculated the frequency at which 
each unit was selected for protection across the 50 resampled datasets as a measure 
of its relative importance (priority) in the conservation plan.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data necessary to run the analyses presented here are available in a permanent 
repository on Zenodo46.

Code availability
The CAPTAIN software is implemented in Python v.3 and is available at 
captain-project.net. All scripts and data necessary to run the analyses presented 
here are available in a permanent repository on Zenodo46.
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Supplementary methods

Natural evolution of the system. We define as system a spatially explicit simulated set

ofN species, each withQs individuals distributed across a 2D grid ofZ cells. The phylogenetic

relationships among species are described by a time­calibrated phylogeny ϕ. The initialization

of the system used in our simulations is described in the Experiments section. The evolution of

the system is discretized into time steps (e.g., years). We model natural processes that include

the death of a fraction of individuals across all cells and their replacement. In the notation used

in the following paragraphs, we indicate the vector including the number of individuals for each

species in a cell at time t asHc
t = {H1,c

t , . . . , HN,c
t } and asHt the matrix of sizeZ×N including

the individuals counts across all species and all cells. The notation and all main parameters in

the framework are summarized in Supplementary Table 1.

At each time step, a fraction of individuals die and are replaced by a number of new

individuals sampled proportionally to their abundance in each cell, their dispersal ability (de­

termined by a dispersal rate λ), and their distance. Each cell is characterized by a carrying
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capacity Kc determining the maximum number of individuals from any species that can occur

in the cell. In our simulations we make a number of simplistic assumptions, which can be eas­

ily relaxed or modified in the program. In particular, we set the natural mortality and dispersal

rates as equal among species and we assume that individuals of each species contribute equally

toward the carrying capacity. Under this system, species are unlikely to naturally go extinct in

the short term even if stochastic variation in death rates per species is applied. This is because

the individuals dying at each time step are replaced by as many individuals (within the carrying

capacity limits) sampled proportionally across species.

Each species s in cell i disperses a number of offspring to cell j equal to

nsij = Hs,i
t × gs × exp

(
− 1

λs

dij

)
(1)

where dij is the distance between the cells i and j, and gs is a growth rate, indicating the number

of dispersing offspring when the distance is dij = 0 (i.e. when i = j). The number of new

individuals added to a cell at each time step is determined by the cumulative number offspring

of all individuals and allN species and from all Z cells in the systems, within the limits allowed

by the cell’s carrying capacity,Kj:

nj =
Kj −

∑N
s Hs,j

t

Kj

(
Z∑
i

N∑
s

nsij

)
(2)

Under this formulation and with the simulations settings used in our experiments (low

mortality rates comparedwith growth and dispersal rates), all individuals dying in a time step are

replaced by new ones, thusmaintaining the density of individuals at carrying capacity. However,

the growth rate will limit the speed of recovery if an event of higher mortality strikes a cell,

for instance due to an episode of extreme climate or to a sudden increase in anthropogenic

disturbance. While in our simulations we used deterministic counts of how many individuals

die at each time step, stochastic variation can be introduced in the model.

Evolution of anthropogenic effects. Anthropogenic impact in the system is modelled

through different processes. We use one layer of disturbance, which characterizes the general

impact of human activities on each cell. The disturbance Dc
t increases the mortality rate in a

cell c at time t and reduces the carrying capacity of a cell such to (1−Dc
t )Ki so that, e.g. with
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Dc = 0.75, only 25% of the theoretical maximum number of individuals can inhabit the cell.

This layer captures land­use changes, such as urbanization, that reduces the available space

for species. Importantly, disturbance affects the mortality rate of individuals differently as a

function of a species­specific sensitivity ds, such that the disturbance­driven mortality rate of

an individual of species s in cell c is:

δs,ct = max
[
− log(1− ds)

(
Hc

t

(1−Dc
t )Kc

− 1

)
, 0

]
(3)

Thus, death rates increase with higher disturbance as this reduces the carrying capacity of a

cell and with increasing species­specific sensitivity, such that δs,ct tends to infinity as ds ap­

proaches 1. Based on this definition, the fraction of individuals of species s dying in a cell c

due to disturbance in one time step is 1 – exp(−δs,ct ). Once reached the new carrying capacity

(1–Dc
t )Kc, the system returns to equilibrium, as Hc

t /(1 − Dc
t )Kc − 1 = 0, and only natural

mortality and replacement occur. However, because sensitivity to disturbance differs among

species, the relative abundances of species in each cell is likely to have changed upon reaching

the new equilibrium, and these changes may involve the disappearance of rare and/or sensitive

species from the cell.

We also model a second layer of selective disturbance, indicated with Ft where F c
t ∈

(0, 1), affects the mortality of individuals in cell c based on a species­specific sensitivity fs ∈

(0, 1), but does not alter the cell’s carrying capacity. This layer captures some land­use changes

(e.g., turning a forest into pasture), activities specifically targeting particular species (e.g., tim­

ber logging). In a species s, a fraction fsFc of individuals will die due to selective disturbance

at each step, in cell c. As this does not affect the carrying capacity of a cell, growth and migra­

tion rates will replace these individuals with others, increasingly representative of species with

relatively low sensitivity (fs). Thus, selective disturbance can cause the (local) disappearance

of species and alter their natural rank abundance.

Climate change. We included a third layer of disturbance due to climate change, which

affects the mortality of individuals in a cell based on a species­specific sensitivity. Sensitivity

to climate change can be interpreted as drought tolerance, resistance to extreme weather or

increasing temperatures, among others. Conceptually, climate change disturbance differs from

the other two forms of disturbance as it cannot be mitigated by a protection policy. While the

3



climate layer can potentially represent different climatic variables, we simplify this here by

referring to it as mean annual temperature.

In our experiments, we initialize a climate layer as a latitudinal gradient with cooler

temperatures in the top cells in the system, which increase linearly towards the bottom of the

grid. We define empirically the temperature tolerance of each species τs as the difference be­

tween the maximum and the minimum temperatures at which the species occurs in the initial

system. As the system evolves, individuals of a species can occur outside their temperature

range because they disperse outside of their initial geographic range, or because they track their

preferred temperatures during climate change.

For individuals occurring outside of their climatic tolerance, we define as ∆Tsc the ab­

solute distance between the mean annual temperature in the cell Tc and the species temperature

range τs. We set∆Tsc = 0 for individuals occurring within their tolerance range and define the

death rate of species s driven by climate as:

δ(s, Tc) =
1

τs
∆Tsc

Thus, climate has the effect of linearly increasing the death rates of individuals occurring outside

of their climate tolerance. Additionally, as the death rate is an inverse function of τs, species

with a wider tolerance are subject to lower death rates than species with narrower tolerance.

Experiments settings.

Initialization of the systems. Across all our simulations, we used systems of 50 × 50 cells

with uniform carrying capacity across all cells set at K = 1, 000. Each simulated system was

initialized with 500 species with random Weibull­distributed population sizes to reflect empir­

ical rank­abundance plots1 , totalling 2.5 million individuals (Supplementary Fig. 1a). Species

ranges were generated based on a random diffusion process, with the number of individuals in

a cell constrained by the carrying capacity (Supplementary Fig. 2).

The natural mortality was set constant across species and equal to 0.01, implying that 1%

of the individuals of each species die at each time step. We set the growth rate to 1, indicating

that, on average, each individual gives origin to one offspring. In our simulations we also
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assumed dispersal rates to equal across all species (λ = 0.1), with the distance between adjacent

cells set to 1. Species were assigned a random beta sensitivity to disturbance (ds ∼ B[1, 1]) and

sensitivity to selective disturbance (fs ∼ B[0.2, 0.7]) (Supplementary Fig. 1c,d).

To track the effects of biodiversity loss on phylogenetic diversity, we simulated phy­

logenetic trees describing the relationships and divergence times among all species. Phyloge­

nies with 500 extant species were simulated based on a birth­death process using the TreePar

package2 with a speciation rate set to 1 and extinction rate sampled for each tree from a uniform

distribution U [0, 0.9].

We assigned an economic value to each species using an approach that generates a high

variation among species but also a geographic pattern, such that species occurring in some

regions tend to be more valuable than species occurring in others (e.g., some types of forest

might harbour more valuable species for timber then others, depending on moisture and soil

gradients). We first randomly initialized species values such that 20% of the species had a value

100 times higher than each of the remaining 80% of the species. We then randomly selected a

cell in the system and divided the value of each species by the distance between the centroid of

the species’ geographic range and the selected cell. The values were then re­scaled so that that

mean value across all species became 1 (Supplementary Fig. 1b).

In our simulations we defined the cost of protection (Cc) for a cell as a function of the

current level (Dc) of anthropogenic disturbance: Cc = 0.2 + 0.4Dc, where 0.2 is an arbitrary

baseline cost. Under this assumption, the cost of protecting a cell with full disturbance is three

times higher than that of a cell with no disturbance. The rationale for this disturbance­dependent

cost is that enforcing protection implies removing (or relocating) the source of disturbance.

If there is a strong disturbance this can be interpreted as a considerable amount of economic

activity (e.g. large town or mine) which will be expensive to remove or relocate.

Monitoring policies to minimize species loss. We performed simulations to assess the effect

of different monitoring policies on biodiversity loss. We modelled a dynamic system in which

an initial area is subject to a level of disturbance that intensifies and expands spatially over

time (Supplementary Fig. 3). Disturbance values are initialized at 0 across all cells and then

increased based on random diffusion processes to create spatial heterogeneity in the disturbance

intensity and a trend toward increased total disturbance through time.
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We divided the system into 100 protection units of 5×5 neighbouring cells and set the

initial budget to 55. Given a baseline cost of 0.2 per cell, the cost of protection for one unit is 5

in the absence of disturbance, thus a maximum of 11 units can be protected under these settings.

However, since the cost of protection is also a function of disturbance, the effective number of

protected units is lower. The protection policy in these simulations allowed for the selection of

a single protection unit at each time step.

We tested three monitoring policies which differ in the frequency of monitoring and the

quality and quantity of information obtained through the feature extraction function.

• Full Recurrent Monitoring. This policy involves monitoring at each time step with the

feature extraction function tracking the number of non­protected rare species, the mean

relative change in populations size compared to previous monitoring, and budget and cost

of each unit (features x1, x2, x3, x5, x6 in Supplementary Table 2). The protection policy

included one meta­parameter (defining the threshold for rare species; Supplementary Ta­

ble 2) and a neural network with two hidden layers of 4 and 2 nodes, respectively.

• Citizen science Recurrent Monitoring. This policy involves the monitoring of the system

at each time step, but with a lower amount and quality of information compared to the

full monitoring policy (features x1, x5, x6). Monitoring only tracks the number of non

protected species per unit without information about population sizes. The monitoring

also includes the available budget and cost of protection. We additionally introduced a

fraction of stochastic error in the feature extraction function. Specifically, we assumed

that an average of 5% of the species in a unit might go undetected (with probability in­

versely proportional to their abundance in the unit) and that another 5% of the species can

be misidentified. To assess the effect of monitoring error in the outcome of the model we

also tested the model with the error set to 25%. The protection policy included a neural

network with two hidden layers of 4 and 2 nodes, respectively.

• Full Initial Monitoring. This policy involves monitoring only at the first time step, with

the feature extraction function tracking the number of non protected species, rare species,

and budget and cost of each unit (features x1x2, x5, x6). Sincemonitoring only takes place

once, no information about trends in population sizes is included. We consider the cost

feature (x5) and the protection indicator (x6) as known even without monitoring, and
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therefore update them at each step. The protection policy included one meta­parameter

(defining the threshold for rare species) and a neural network with two hidden layers of

4 and 2 nodes, respectively.

The models were optimized using the algorithm described above, running 6 simulations

in parallel for 1,000 epochs. Each simulation was based on a different randomly initialized

system and ran for 25 time steps. We then used the estimated parameters to assess the effect

of different monitoring policies in 250 additional simulations. Each simulation was run for 25

time steps and we fixed the seeds of the random number generators used in the runs to ensure

the simulations were comparable among monitoring policies (i.e. based on the same underlying

system and disturbance processes). For comparison, we repeated the 250 simulations using a

random protection policy, in which non­protected units are assigned a uniform probability of

being selected for protection. Additionally, we repeated the analyses using a greedy algorithm

that at each step selects the protection unit with the highest ratio between the number of non­

protected species and its cost.

We summarized the outcome of the simulations by measuring at the last time step the

species loss, value loss, phylogenetic diversity loss and the amount of protected area. We report

all measurements as percentage changes compared to the baseline outcome of the randompolicy.

Testing the trade­offs among species, value, and area losses. We ran simulations in which

the policy aimed at minimizing value loss or at maximizing the number of protected units, using

the same settings as in the simulations described above.

• Minimizing value loss. In this policy the negative reward was set equal to the cumula­

tive value of extinct species. We applied a full recurrent monitoring, with the feature

extraction function tracking the cumulative value of non protected species, that of rare

species with declining population sizes, as well as budget and cost of each unit (fea­

tures x4, x5, x6, x7, x8). The protection policy included one meta­parameter (defining the

threshold for rare species) and a neural network with two hidden layers of 4 and 2 nodes,

respectively.

• Maximizing protected area. In this policy the positive reward was set equal to the amount

of protected area, regardless of which and how many species occurred in it. We applied
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recurrent monitoring, but the feature extraction function here only returned the cost of

each unit and the available budget (features x5, x6). The protection policy included a

neural network with one hidden layer of 4 nodes.

We optimized the models, performed simulations and summarized the results as described in

the section above.

Comparison with Marxan. We ran additional simulations to compare the performance of our

model optimized through reinforcement learning framework with Marxan3 (v. 4.0.6), one of

the state­of­the­art and most widely used programs for systematic conservation planning. By

default Marxan optimizes the placement of protection units to meet a predefined conservation

target while minimizing the cost. A Marxan analysis can be however set up to run within a lim­

ited budget4 by setting a maximum budget (parameter COSTTHRESH; here set to 55 matching our

CAPTAIN settings and allowing for a maximum of 11 protected units) and penalty scores that

prevent the algorithm from exceeding the budget (parameters THRESHPEN1 and THRESHPEN2

here set both equal to 10). Given the relatively small number of protection units (100 in our

simulations), we set the boundary length multiplier (BLM) to 0, thus not applying any penalties

for choosing non­adjacent protection units. We applied the same cost of protection across units

and the same budget used in the CAPTAIN analyses, such that it allowed the protection of at

most 10% of the protection units in the system.

Because Marxan is designed to identify all protection units in one step, we performed

a Full Initial Monitoring of the system to generate Marxan input files containing: a definition

of the protection units (as in Fig. 1a) and their cost, the presence and absence of species across

units and their abundance (number of individuals), and the conservation target for each species.

Since in all our CAPTAIN simulations we considered species as extinct when their total popu­

lation size is lower then 10 individuals, we set a conservation target of 10 individuals per species

to be included within the designated protected units in the Marxan setup. We performed two

sets of experiments, each including 250 simulations: in the first (one­time protection policy), all

budget is spent in one step after monitoring the system for three steps, while in the second (dy­

namic protection policy) the establishment of protected units is done dynamically as the system

evolves.

• One­time protection policy. In CAPTAIN, we trained a model (using the optimization al­
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gorithm described above) based on recurrent full monitoring performed in the first three

time steps followed by the placement of all protected units. The protection policy in­

cluded one meta­parameter (defining the threshold for rare species; Supplementary Table

2) and a neural network with one hidden layer of 8 nodes. In Marxan, the system was

monitored as described above at step three. We then performed 10 optimizations using

the simulated annealing algorithm followed by iterative improvement4 (with settings:

NUMITNS = 1,000,000; STARTTEMP = ­1; NUMTEMP = 10000) and chose the output of the

best among them to select the protected units. For both CAPTAIN and Marxan policies,

the system evolved until reaching 25 steps with increasing and spatially inhomogeneous

disturbance (Supplementary Fig. 3).

• Dynamic protection policy. In CAPTAIN, this corresponds to the Full Recurrent Moni­

toring experiment described in the section Monitoring policies to minimize species loss.

In Marxan, the system was monitored and the model optimized as in the One­time pro­

tection policy, but the selected units were established one at a time, i.e. placing at most

one unit at each step. Following the settings used in our previous experiments, the system

evolved through time with increasing and spatially heterogeneous disturbance.

For comparison, as in the other experiments, we repeated the simulations using a random pro­

tection policy and a greedy algorithm that at each step selects the protection unit with the highest

ratio between the number of non­protected species and its cost. We summarized the outcome

of the simulations by measuring at the last time step the species loss (measured as number of

species with a remaining population size greater than 10 individuals), value loss, phylogenetic

diversity loss and the amount of protected area. We report all measurements as percentage

changes compared to the baseline outcome of the random policy.
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Supplementary Box 1: Socio­economic valuation of biodiversity

The field of economics sees nature as an asset, analogous to diversity in portfolio

management5,6. It provides valuable insurance that may prove vital7. Risks are reduced if

two assets are negatively correlated. Weitzman8 incorporates the idea of redundancy when

species share genes, and shows that optimal policy under a budget constraint will involve

strict prioritization of some species.

The value of ecosystem services hinges on ease of substitution by human­made

capital. In some respects, humans can “replace” a coral reef by artificial structures. Fish

still find protection and food, but the artificial reef does not fully “replace” nature. When

nature is irreplaceable, we speak of strong (rather than weak) sustainability; meaning more

care must be taken to protect natural capital assets9.

We see massive degradation of natural assets that could have yielded a high return

if properly managed by effective owners or stewards. Institutional mechanisms (including

secure property rights) are vital to protect nature10. Still, private incentives to preserve bio­

diversity (e.g. research and development in biodiversity­based solutions) remain weak11,

and strong policies are needed12.

Both benefits and costs of conservation vary considerably across space. Protection

is typically expensive for farmland or real estate close to cities. Some land is cheap but

protection enforcement expensive precisely because of remoteness. Some areas may be

valuable because they have high biodiversity or endemism. What the framework we devel­

oped here strives for is high total biodiversity benefits with low land and opportunity costs,

at the same time as it reduces risks associated with climate change uncertainties13. Spatial

targeting of sites that increase biodiversity protected per monetary unit is cost effective,

and may also include recreational and other values14,15 that we hope to develop more in

future model versions.
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Supplementary Box 2: New techniques for biodiversity monitoring

Our simulations show that the regular monitoring of species is critical for prior­

itizing areas for conservation under changing anthropogenic and climate pressure (main

text, Fig. 2). But given scarce resources and vast areas to monitor, how can this be most

efficiently accomplished?

For centuries, biodiversity inventories have been carried out by biodiversity experts.

This work has comprised the collection, recording and eventual identification of biological

samples, such as fertile tree branches or whole animals – a time­ and resource­consuming

process, resulting in taxonomically and spatially biased and incomplete biodiversity data16.

New approaches are now speeding up and popularizing biodiversity monitoring, including

environmental DNA, remote sensing and citizen science.

Rather than locating and recording each individual species directly, soil samples can be

taken by non­specialists (a) and their environmental DNA (eDNA) contents subsequently

analyzed. This approach reveals the biotic composition of whole communities, including

plants, animals, fungi and bacteria. Standardized sampling also allows direct comparison of

taxonomic and phylogenetic diversity across multiple sites17, helping to inform on presence

and absence of species. Challenges remain in completing reference databases for matching

sequences to names, and in separating local versus transported DNA from nearby areas.

Citizen science initiatives such as ’bio­blitzes’ (an intense period of biological sur­

veying, often by amateurs) can help fill up critical data gaps, reduce monitoring costs and
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increase local awareness and engagement for biodiversity. An impressive 3.5 billion smart­

phones are now in use around the world18, creating unseen possibilities of linking millions

of people to nature through species logging (b), using platforms such as iNaturalist19 which

increasingly use image­recognition software and geolocations for automated species identi­

fication. In our simulations, even identification errors of up to 25% during monitoring steps

(a conservative rate for many organism groups, such as birds, mammals or trees) have only

a marginal impact on the biodiversity outcomes (Supplementary Table 3). [Photo credits:

a­b: A.A.; c: Justin Moat].

Finally, remote sensing technologies can rapidly scan and characterize relatively

large areas. Using 3­D sensing technology, they now hold the promise of automated iden­

tification of species using multi­spectrum images20. The spectral signatures of species can

be produced by combining on­the­ground (visible to NIR spectrophotometry of plant ma­

terial and terrestrial LiDAR) with from­the­air (hyperspectral and LiDAR UAV survey)

data. This allows the isolation of individual objects to record the presence and abundance

of species (c). The technology can also provide measures of vegetation structure (inform­

ing on an areas’ functional diversity) and ecosystem services, such as carbon storage, soil

water content, and other parameters that could be easily implemented in our model to help

the valuation and ranking of areas for protection, besides greatly improving the quality of

habitat data publicly available.
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Supplementary Figures

a b c d

Supplementary Figure 1. Value distribution across four key species­specific model parame­
ters. For a randomly selected simulation, the graphs show a, initial species population sizes,
b, species economic values, c, species sensitivity to anthropogenic disturbance and d, species
selective sensitivity (affecting them disproportionately, due e.g. to selective logging of trees).
In each plot, species are ranked by the plotted metric. Population size and species value are
log10 transformed.

Supplementary Figure 2. Examples of species ranges. For eight randomly selected species, the
plots show their total distribution (non­grey cells; summed to a value of range size) as well as
total population sizes (i.e., the number of individuals in the system, or abundance). Cells are
coloured based on the log10­transformed number of individuals.
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Time: 1, mean disturbance: 0.07
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Supplementary Figure 3. Evolution of anthropogenic disturbance across the simulated system.
For a randomly selected simulation, the colours show changes in human disturbance across
individual cells at time steps 1, 5, 10, and 20 in a system where no protected areas were set. The
mean overall disturbance increases 10­fold from 0.07 to 0.7.
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Supplementary Figure 4. Evolution of climate change across the simulated system. For a
randomly selected simulation, the colours show temperature changes across individual cells at
time steps 1, 5, 10, and 20 resulting in an average increase across the entire system of 0.47
degrees with random local deviations at each step, and the overall increase in mean temperature
across the entire system.
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Supplementary Figure 5. Madagascar tree diversity and threats. The maps show data obtained
from Carrasco et al.Ref. 34, main text: a) estimated diversity of endemic trees as predicted by species
distributionmodelling; b) threats to tree conservation, with redder colours showing higher levels
of threat (sensu Carrasco et al.Ref. 34, main text).
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Supplementary Figure 6. Ranking of potential protection units across Madagascar: The maps
show a ranking of priority areas for protection across Madagascar based on the distribution
of endemic trees based on a limited budget allowing for up to 10% of protected area overall.
The colour scale is proportional to the relative importance of each protected unit measured
as the frequency at which it was included in the optimised solution across 50 replicated anal­
yses randomizing species sensitivities to disturbance a), protection unit ranks resulting from
Marxan optimizations (with BLM = 0); b), equivalent CAPTAIN results based on a full initial
monitoring policy; c­d) histograms of the fraction species range included in the protected units
calculated for each species. The red dashed lines indicate the 10% threshold set as the target of
the policy.
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Supplementary Tables

Supplementary Table 1. List of variables used in our model and their notation. Notation t
always indicates “at time t”.

Parameter Explanation
Z Number of cells in the system
N Number of species
Kc Carrying capacity of a cell (total number of individuals it can contain) c
Ht Matrix with number of individuals for each species across each cell
Hc

t Number of individuals for each species in cell c
Hc,s

t Number of individuals of species s in cell c
Qs

t Total number of individuals of species s, i.e.
∑Z

c (H
c,s
t )

Es
t Share of individuals of species s, i.e.

∑Z
c (H

c,s
t )/

∑N
s

∑Z
c (H

c,s
t )

gs Growth rate of species s
δc,st Death rate (cumulating the natural and disturbance­induced mortalities)
λs Dispersal rate
ϕ Phylogenetic tree connecting all species in the system
Dt Disturbance matrix
Dc

t Disturbance at cell c
ds Sensitivity to disturbance of species s
Ft Selective disturbance matrix
F c
t Selective disturbance at cell c

fs Sensitivity to selective disturbance of species s
Tt Climate matrix
T c
t Climate in cell c

τs Climatic tolerance of species s
Pt Protection matrix
P c
t Protection level of cell c

Bt Available budget
Ct Matrix of cost of protection
Cc

t Cost of protection of cell c
St State of the system. This includes {Ht, Dt, Ft, Tt, Ct, Pt, Bt}
πX Monitoring policy setting the frequency of monitoring and defining the func­

tion X(St)

πY Protect policy
U Number of protection units
X(St) Function extracting features from last monitored state of the system
{x1, x2, . . . xn} List of features extracted for each protection unit
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Parameter Explanation
W Number of coefficients in the neural network determining the protection pol­

icy
M Number of metaparameters (in our modelsM = 1)
q Metaparameter defining the threshold for rare species when extracting fea­

tures
Y (X(St),W, q) Function choosing the unit to protect based on the extracted features and

estimated parametersW and q
rt Reward in one time step t. This depends on the policy, e.g. rt = −1 if the

policy aims to minimize species loss and one species went extinct at time t.

18



Supplementary Table 2. List of features that can be extracted through monitoring, using the
function X(St).

Parameter Explanation
x1 Number of non­protected species, i.e. species not included in other already

protected units. In systematic conservation planning, this value is critical to
evaluate complementarity of protected areas

x2 Number of non­protected rare species. This is a subset of the count (x1)
in which only species with a population size smaller than a threshold t are
included. The threshold is defined as: τ = exp(q log(Qmax)), where Qmax

is the largest population size among all species and q ∈ (0, 1) is an estimated
parameter, such that if q = 1 all species are counted, whereas with q < 1

only a fraction of species will be included in the count. Note that, depending
on the monitoring policy, Qmax can be updated at the time of monitoring,
thus reflecting the largest population size at that time

x3 Mean relative change in populations size

1

Nu

∑
s∈u

(
Qs

t

Qs
t−1

− 1

)

where the population size of species s at time t (Qs
t ) is divided by a previous

measure (Qs
t−1; time t−1 indicates the time of the previous monitoring) and

averaged across all Nu species present in a protection unit u. We note that
to generate this feature the feature extraction function requires information
from a previous state of the system X(St, St−1).

x4 Available budget (Bt)
x5 Cost of the unit
x6 An indicator defining whether the unit is already protected (1) or not (0)
x7 Cumulative value of non­protected species
x8 Cumulative value of non­protected rare species (as defined in x2) with de­

clining relative population sizes (as defined in x3)
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